Cochlear Injury and Adaptive Plasticity of the Auditory Cortex
نویسندگان
چکیده
Growing evidence suggests that cochlear stressors as noise exposure and aging can induce homeostatic/maladaptive changes in the central auditory system from the brainstem to the cortex. Studies centered on such changes have revealed several mechanisms that operate in the context of sensory disruption after insult (noise trauma, drug-, or age-related injury). The oxidative stress is central to current theories of induced sensory-neural hearing loss and aging, and interventions to attenuate the hearing loss are based on antioxidant agent. The present review addresses the recent literature on the alterations in hair cells and spiral ganglion neurons due to noise-induced oxidative stress in the cochlea, as well on the impact of cochlear damage on the auditory cortex neurons. The emerging image emphasizes that noise-induced deafferentation and upward spread of cochlear damage is associated with the altered dendritic architecture of auditory pyramidal neurons. The cortical modifications may be reversed by treatment with antioxidants counteracting the cochlear redox imbalance. These findings open new therapeutic approaches to treat the functional consequences of the cortical reorganization following cochlear damage.
منابع مشابه
Cochlear implants stimulate activity-dependent CREB pathway in the deaf auditory cortex: implications for molecular plasticity induced by neural prosthetic devices.
Neural activity modulates the maturation of synapses and their organization into functional circuits by regulating activity-dependent signaling pathways. Phosphorylation of cyclic AMP/Ca(2+)-responsive element-binding protein (CREB) is widely accepted as a stimulus-inducible event driven by calcium influx into depolarized neurons. In turn, phosphorylated CREB (pCREB) activates the transcription...
متن کاملنقش احتمالی ساخت پذیری سیناپسی هسته پشتی حلزونی در ایجاد وزوزهای سابجکتیو
Abstaract Background and Aim: Tinnitus is a specific auditory sensitivity in which the patient hears nonexistent sounds. From neurological point of view, in majority of them increment in neural activity has been proposed characterized by increase in spontaneous firing rate in central auditory system. According to a hypothesis, tinnitus is a result of abnormal synaptic plasticity and reduced inh...
متن کاملGene expression and plasticity in the rat auditory cortex after bilateral cochlear ablation.
CONCLUSION The plastic changes in the auditory cortex after bilateral cochlear ablation are related to the immediate early genes as well as the neural plasticity-related genes. In addition, cross-modal plasticity may play an important role in the early changes in the auditory cortex after bilateral cochlear ablation. OBJECTIVES The purpose of this study was to identify candidate genes involve...
متن کاملCortical reorganization in postlingually deaf cochlear implant users: Intra-modal and cross-modal considerations
With the advances of cochlear implant (CI) technology, many deaf individuals can partially regain their hearing ability. However, there is a large variation in the level of recovery. Cortical changes induced by hearing deprivation and restoration with CIs have been thought to contribute to this variation. The current review aims to identify these cortical changes in postlingually deaf CI users ...
متن کاملPlasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness.
We have examined the effect of restricted unilateral cochlear lesions on the orderly topographic mapping of sound frequency in the auditory cortex of adult guinea pigs. These lesions, although restricted in spatial extent, resulted in a variety of patterns of histological damage to receptor cells and nerve fibres within the cochlea. Nevertheless, all lesions resulted in permanent losses of sens...
متن کامل